Increased vulnerability to psychosocial stress in heterozygous serotonin transporter knockout mice.
نویسندگان
چکیده
Epidemiological evidence links exposure to stressful life events with increased risk for mental illness. However, there is significant individual variability in vulnerability to environmental risk factors, and genetic variation is thought to play a major role in determining who will become ill. Several studies have shown, for example, that individuals carrying the S (short) allele of the serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR) have an increased risk for major depression following exposure to stress in adulthood. Identifying the molecular mechanisms underlying this gene-by-environment risk factor could help our understanding of the individual differences in resilience to stress. Here, we present a mouse model of the 5-HTT-by-stress risk factor. Wild-type and heterozygous 5-HTT knockout male mice were subjected to three weeks of chronic psychosocial stress. The 5-HTT genotype did not affect the physiological consequences of stress as measured by changes in body temperature, body weight gain and plasma corticosterone. However, when compared with wild-type littermates, heterozygous 5-HTT knockout mice experiencing high levels of stressful life events showed significantly depressed locomotor activity and increased social avoidance toward an unfamiliar male in a novel environment. Heterozygous 5-HTT knockout mice exposed to high stress also showed significantly lower levels of serotonin turnover than wild-type littermates, selectively in the frontal cortex, which is a structure that is known to control fear and avoidance responses, and that is implicated in susceptibility to depression. These data may serve as a useful animal model for better understanding the increased vulnerability to stress reported in individuals carrying the 5-HTTLPR S allele, and suggest that social avoidance represents a behavioral endophenotype of the interaction between 5-HTT and stress.
منابع مشابه
The roles of sex and serotonin transporter levels in age- and stress-related emotionality in mice.
Mood disorders are influenced by genetic make-up and differentially affect men and women. The s/l promoter polymorphism in the serotonin transporter (SERT) gene moderates both trait emotion and the vulnerability to develop depressive states in humans. Similarly, male mice lacking SERT (Knockout/KO) display an elevated emotionality phenotype. We now report that the SERT-KO phenotype is maintaine...
متن کاملH2-EB1 Molecule Alleviates Allergic Rhinitis Symptoms of H2-Eb1 Knockout Mice
Background: H2-EB1 molecule which is the homolog of Human HLA-DRB1 is proposed to be associated with allergic rhinitis (AR). Construction of H2-Eb1 knockout animal models provides a tool to elucidate the role of H2-EB1 and AR pathogenesis. Objective: To establish the H2-Eb1 knockout model and investigate the H2-EB1 functions in H2-Eb1 knockout mice as a model of AR. Methods: The Cre/Lox...
متن کاملhe developing use of heterozygous utant mouse models in brain onoamine transporter research
5-Hydroxytryptamine (5-HT), dopamine and norepinephrine are important monoamine neurotransmitters implicated in multiple brain mechanisms and regulated by high-affinity transmembrane monoamine transporters. Although knockout mice lacking 5-HT, dopamine or norepinephrine transporters are widely used to assess brain monoamine processes, these models have several methodological limitations. There ...
متن کاملSerotonin and stress pdf
NeuroGénétique and Stress, INSERM U471, Institut F. Variants at serotonin transporter and 2A receptor genes predict cooperative behavior differentially according to presence of punishment Proc. Abstract Full Text PDF.Corticosteroidserotonin interactions in the neurobiological mechanisms of stress-related disorders. Laurence Lanfumey a,b, Raymond Mongeau a,b, Charles.of acute and chronic stress ...
متن کاملTramadol and another atypical opioid meperidine have exaggerated serotonin syndrome behavioural effects, but decreased analgesic effects, in genetically deficient serotonin transporter (SERT) mice.
The serotonin syndrome is a potential side-effect of serotonin-enhancing drugs, including antidepressants such as selective serotonin reuptake inhibitors (SSRIs) and monoamine oxidase inhibitors (MAOIs). We recently reported a genetic mouse model for the serotonin syndrome, as serotonin transporter (SERT)-deficient mice have exaggerated serotonin syndrome behavioural responses to the MAOI trany...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Disease models & mechanisms
دوره 3 7-8 شماره
صفحات -
تاریخ انتشار 2010